Epigenetic control may explain large within-plant heterogeneity of meiotic behavior in telocentric trisomics of rye.

نویسندگان

  • J Sybenga
  • H Verhaar
  • D G A Botje
چکیده

In telocentric trisomics (telotrisomics) of organisms in which the chromosomes normally have two distinct arms, a single chromosome arm with a centromere is present in addition to a complete diploid set of chromosomes. It is the simplest form of polysomy and suitable for analyzing meiotic pairing and recombination patterns in situations where chromosomes compete for pairing. When no suitable meiotic chromosome markers are available, four metaphase I configurations can be distinguished. Their relative frequencies are indicative of the pairing and recombination patterns. In short arm (1RS) telotrisomics of chromosome 1R of rye (Secale cereale) we observed great differences in pairing and recombination patterns among spikes from different tillers and clones of the same plants. Anthers within spikes were only very rarely different. We analyzed a large number of genotypes, including inbreds as well as hybrids. The effects of genetic and environmental conditions on heterogeneity, if any, were limited. Considering that the reproductive tissue of a spike is derived from one primordial cell, it seems that at the start of sexual differentiation there was variation among cells in chromosomal control, which at meiosis determines pairing and crossing-over competence. We suggest that it is an epigenetic system that rigidly maintains this pattern through generative differentiation. In competitive situations the combination most competent for pairing will pair preferentially, forming specific meiotic configurations with different frequencies for different spikes of the same plant. This would explain the heterogeneity between spikes and the homogeneity within spikes. The epigenetic system could involve chromatin conformation or DNA methylation. There were no signs of heterochromatinization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Origin of Iso-Chromosomes at Meiosis.

N 1.50-CHROMOSOME is a chromosome having two identical arms A (DARLINGTON 1939). Such chromosomes have been studied recently by RHOADES (1940) in Zea and by DARLINGTON (1940) in Fritillaria. It is also very probable that the extra chromosomes in secondary trisomics, such as the numerous types which have been found in Datura (BLAKESLEE and AVERY 1938) are true iso-chromosomes. The manner in whic...

متن کامل

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

Terminal regions of wheat chromosomes select their pairing partners in meiosis.

Many plant species, including important crops like wheat, are polyploids that carry more than two sets of genetically related chromosomes capable of meiotic pairing. To safeguard a diploid-like behavior at meiosis, many polyploids evolved genetic loci that suppress incorrect pairing and recombination of homeologues. The Ph1 locus in wheat was proposed to ensure homologous pairing by controlling...

متن کامل

Precocious meiotic centromere separation of a novel yeast chromosome.

In Saccharomyces cerevisiae, a reciprocal translocation between chromosome II and a linear plasmid carrying a centromere (CEN6) has split chromosome II into two fragments: one, approximately 530 kilobase pairs (kbp) in size, has the left arm and part of the right arm of chromosome II; the other, a telocentric fragment approximately 350 kbp in size, has CEN6 and the rest of the right arm of chro...

متن کامل

Somatic instability of telocentric chromosomes in wheat and the nature of the centromere.

HE centromere, a necessary part of all chromosomes, is the region responsible Tfor congression and poleward movement. It is called “kinetochore” by those who wish to emphasize that it is the center of kinetic chromosome activity. This name is also more suitable because the centromere often is far from central in its location. In the following, the name centromere is retained because of its rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 178 4  شماره 

صفحات  -

تاریخ انتشار 2008